
Application of neural networks for software quality prediction
using object-oriented metrics

Mie Mie Thet Thwin, Tong-Seng Quah

Abstract

This paper presents the application of neural networks in software quality estimation using object-oriented metrics. In this paper,

two kinds of investigation are performed. The first on predicting the number of defects in a class and the second on predicting the

number of lines changed per class. Two neural network models are used, they are Ward neural network and General Regression

neural network (GRNN). Object-oriented design metrics concerning inheritance related measures, complexity measures, cohesion

measures, coupling measures and memory allocation measures are used as the independent variables. GRNN network model is

foundtopredictmoreaccuratelythanWardnetworkmodel.

1. Introduction

Many object-oriented metrics have been proposed
over the last decade. Prediction models using object-

oriented design metrics can be used for obtaining

assurances about software quality. In practice, quality

estimation means either estimating reliability or main-

tainability. The estimated number of defects can also be

normalized by a size measure to obtain a defect density

estimate. Maintainability is typically measured as

change effort. Change effort can mean either the average
effort to make a change to a class, or the total effort

spent on changing a class.

A variety of statistical techniques are used in software

quality modeling. Models are often based on statistical

relationships between measures of quality and measures

of software metrics. However, relationships between

static software metrics and quality factors are often

complex and nonlinear, limiting the accuracy of con-
ventional approaches. Artificial neural networks are

adept at modeling nonlinear functional relationships

that are difficult to model with other techniques, and

thus, are attractive for software quality modeling.

We conduct our study in the object-oriented para-
digm. However since the object-oriented paradigm

exhibits different characteristics from the procedural

paradigm, different software metrics have to be defined

and used.

Our neural network model aims to predict object-

oriented software quality by estimating the number of

faults and the number of lines changed per class. We

used software metrics including both object-oriented
metrics and traditional complexity metrics. Object-ori-

ented metrics used include inheritance related measures,

cohesion measures, coupling measures and memory

allocation measures.

We also introduce using Ward neural network and

General Regression neural network to improve predic-

tion result for estimating software quality. Ward neural

network is a backpropagation network with different
activation functions. They are applied to hidden layer

slabs to detect different features in a pattern processed

through a network to lead to better prediction. We use a

Gaussian function in one hidden slab to detect features

in the mid-range of the data and a Gaussian comple-

ment in another hidden slab to detect features for the

upper and lower extremes of the data. Thus, the output

mail to: miethet@pmail.ntu.edu.sg


layer will get different ‘‘views of the data’’. Combining

the two feature sets in the output layer leads to a better

prediction.

Another architecture that we have chosen is the

General Regression Neural Network (GRNN). Specht

(1991) states that it is a memory-based network that
provides estimates of continuous variables and con-

verges to the underlying (linear or nonlinear) regression

surface. This is a one-pass learning algorithm with a

highly parallel structure. Even with sparse data in a

multidimensional measurement space; the algorithm

provides smooth transitions from one observed value to

another.

2. Related work

There is great interest in the use of object-oriented

approach in software engineering. With the increasing

use of object-oriented methods in new software devel-

opment there is a growing need to both document and

improve current practices in object-oriented design and
development.

Many measures have been proposed in the literature

to capture the quality of object-oriented (OO) code and

design for detecting fault-proneness of classes (Briand

et al., 2002; Cartwright and Shepperd, 2000; Emam

et al., 2001; Fioravanti and Nesi, 2001; ReiBing, 2001).

Many investigations using statistical methods have been

made to predict software quality.
One such set of object-oriented metrics is the set

proposed by Chidamber and Kemerer (1994). Chid-

amber and Kemerer also reported empirical data from

two commercial organizations and suggested ways in

which the metrics could be used to manage OO design

efforts. In their paper it was suggested that the primary

use of the metrics by managers would be to identify

outlying values that might reflect suboptimal design
practice.

Emam et al. (2001) have constructed a model to

predict which classes in a future release of a commercial

Java application will be faulty. The model was then

validated on a subsequent release of the same applica-

tion. Their results indicated that the prediction model

had a high accuracy.

Fioravanti and Nesi (2001) have extracted over 200
different object-oriented metrics to identify a suitable

model for detecting fault-proneness of classes. They

came to the conclusion that only a few of them were

relevant for identifying fault-prone classes.

A set of object-oriented metrics in terms of their

usefulness in predicting fault-proneness, an important

software quality indicator is empirically validated in

Ping et al. (2002). Their validation is carried out using
two data analysis techniques: regression analysis and

discriminant analysis.

Briand et al. (2000) performed an empirical study on

the relationships between existing object-oriented cou-

pling, cohesion, and inheritance measures and the

probability of fault detection in system classes during

testing. Their univariate analyses have shown that many

coupling and inheritance measures are strongly related
to the probability of fault detection in a class. Their

multivariate analysis results showed that by using some

of the coupling and inheritance measures, very accurate

models could be derived to predict in which classes most

of the faults actually lie.

Most of these prediction models are built using sta-

tistical models. Neural networks have seen an explosion

of interest over the years, and are being successfully
applied across a range of problem domains, in areas as

diverse as finance, medicine, engineering, geology and

physics. Indeed, anywhere that there are problems of

prediction, classification or control, neural networks are

being introduced. A neural network can be used as a

predictive model because it is very sophisticated mod-

eling technique capable of modeling complex functions.

Khoshgoftaar et al. (2000) presented a case study of
real-time avionics software to predict the testability of

each module from static measurements of source code.

They found that the neural network is a promising

technique for building predictive models, because they

are able to model nonlinear relationships.

Our neural network model aims to predict object-

oriented software quality by estimating the number of

faults per class and the number of lines changed per
class. We also introduce using Ward neural network and

General Regression neural network to improve predic-

tion results for estimating software quality.

3. Design of the study

3.1. Neural network modeling

The first neural network architecture that we have

chosen is the Ward Network (NeuroShell 2, 2001) as

shown in Fig. 1. Backpropagation network is the most

popular network for practical applications. We chose

three layer Backpropagation Ward neural network

Slab1 Slab4

Slab3

Slab2

Slab5

Fig. 1. Ward neural network.



because it is an effective network for most applications

and trains much more quickly than 4 or 5 layer net-

works. We use three different activation functions. It has

three slabs (slab2, slab3 and slab4) in the hidden layer.

Hidden layers in a neural network are known as feature

detectors. A slab is a group of neurons. Each slab in the
hidden layer has a different activation function; this

offers three ways of viewing the data. We use a linear

function for the output slab (slab5). The hyperbolic

tangent (tanh) function is used in one slab of hidden

layer (slab3) because it is better for continuous valued

outputs especially if the linear function is used on the

output layer. The Gaussian function is used in another

slab of the hidden layer (slab2). This function is unique,
because unlike the others, it is not an increasing func-

tion. It is the classic bell shaped curve, which maps high

values into low ones, and maps mid-range values into

high ones. The Gaussian Complement is used in the

third slab of the hidden layer (slab4) to bring out

meaningful characteristics in the extremes of the data.

We use a smaller learning rate 0.1 and momentum 0.1 as

our network is a predictive network where outputs are
continuous values rather than categories.

Another neural network architecture that we have

chosen is the General Regression Neural Network

(GRNN) as shown in Fig. 2. GRNN is based on a one-

pass learning algorithm with a highly parallel structure.

GRNN is a powerful memory based network that could

estimate continuous variables and converge to the

underlying regression surface. The strength of GRNN is
that it is able to deal with sparse data effectively.

GRNNs feature fast training times, can model non-lin-

ear functions, and have been shown to perform well in

noisy environments given enough data. Specht (1991)

has shown that the algorithm in GRNN is able to pro-

vide a smooth transition from one observed value to

another, even with sparse data in a multidimensional

measurement space. GRNN applications are able to
produce continuous valued outputs. For GRNN net-

works, the number of neurons in the hidden layer

(Slab2) is usually the number of patterns in the training

set because each pattern in the training set is represented

by one neuron. The number of neurons in the input

layer (Slab1) is the number of inputs, and the number of

neurons in the output layer (Slab3) corresponds to the

number of outputs.
The primary advantage of GRNN is the speed at

which the network can be trained. There are no training

parameters such as learning rate and momentum in

backpropagation network, but there is a smoothing

factor that is applied after the network is trained.

Smoothing factor is the only adjustable parameter in

GRNN. Therefore, making overtraining is less likely in

GRNN. The smoothing factor allows the GRNN to
interpolate between patterns or spectra in the training

set. The smoothing factor determines how tightly the

network matches its predictions to the data in the

training patterns. For GRNN networks, the smoothing

factor must be greater than 0 and usually ranges from

0.01 to 1 with good results.

3.2. Principal component analysis

If a group of variables in a data set are strongly

correlated, these variables are likely to measure the same

underlying dimension (i.e., class property) of the object.

Many object-oriented metrics have high correlation with

each other. Principal components analysis transforms

raw data into variables that are not correlated to each

other. If correlated raw software metrics were used di-
rectly, the neural network models did not train satis-

factorily, but transforming raw data with principal

components analysis facilitated training. Principal

component analysis (PCA) is a standard technique to

identify the underlying, orthogonal dimensions that ex-

plain relations between the variables in a data set.

Principal components (PCs) are linear combinations of

the standardized independent variables. It is also a data
reduction technique. The varimax rotation method was

used in this study. It is an orthogonal rotation method

that minimizes the number of variables that have high

loadings on each factor. It simplifies the interpretation

of the factors. We selected only PCs whose Eigen values

are larger than 1.0. We preformed PCA using SPSS

software.

4. Prediction of number of faults

4.1. Description of data

Faults appear when a program does not perform

according to users’ specification during testing and

operations stages. The applications used in this predic-
tion are three subsystems of HMI (Human Machine

Interface) software, which is a fully networked Super-

visory Control and Data Acquisition system. This soft-

ware, which consists of more than 200 subsystems and 3

million lines of code, has been used by many manufac-

turing companies for several years. Although each sub-

system selected plays a different role in the system and

performs a different functionality, they share some
similar characteristics that meet our selection criteria.

Subsystem A is a user interface-oriented program that

 Slab2Slab1  Slab3

Fig. 2. GRNN network.



allows customers to configure the basic product opera-

tions and device communications. It consists of 20

classes that define 256 new, re-defined or virtual func-

tions, and approximately 5600 lines of code in length.

Subsystem B is a real time data logging process that

collects data as needed and logs data into the database,
based on the user configuration. This subsystem defines

48 classes and 353 new, re-defined or virtual functions,

comprising approximately 21,300 lines of code. Sub-

system C is a communication-oriented program that acts

as a router, not only delivering messages between pro-

cesses within the same host but also forwarding mes-

sages to other hosts. This subsystem defines 29 classes

and 293 new, re-defined or virtual functions and con-
tains approximately 16,000 lines of code (Tang et al.,

1999).

4.2. Selection of metrics

As discussed in Section 1, we are introducing the

research on software defects prediction into the object-

oriented paradigm using neural networks. We have se-
lected the object-oriented metrics that have a strong

relationship with software quality. To indicate the

presence of software defects the following existing met-

rics (Chidamber and Kemerer, 1994 ; Tang et al., 1999)

are used.

Depth of Inheritance Tree (DIT) of a class is the

length of the longest path from the class to the root in

the inheritance hierarchy. This determines the com-
plexity of a class based on its ancestors, since a class

with many ancestors is likely to inherit much of the

complexity of its ancestors. The deeper a class is in the

hierarchy, the greater the number of methods it is likely

to inherit making it more complex to predict its

behavior. Therefore, the more likely it is to contain a

fault.

Number of Children (NOC) measures the number of
immediate descendants of a particular class. This mea-

sures an amount of potential reuse of the class. The

more reuse a class might have, the more complex it may

be, and the more classes are directly affected by changes

in its implementation. This increases the magnitude of

ripple effects. Therefore we selected the NOC metric to

predict the number of faults.

Coupling Between Objects (CBO) is defined as the
number of other classes to which a class is coupled.

Coupling measures the degree of inter dependence

among the components of a software system. High

coupling makes a system more complex; highly interre-

lated modules are harder to understand, change or

correct and thus likely to be more fault-prone.

Response For a Class (RFC) is the number of

methods that can potentially be executed in response to
a message received by an object of that class. The re-

sponse set of a class consists of the set of M methods of

the class, and the set of methods directly or indirectly

invoked by methods in M. The number of methods that

could potentially respond to a message indicates the

complexity of that class. Therefore RFC can be used as

a predictor variable for the number of faults.

Inheritance Coupling (IC) provides the number of
parent classes to which a given class is coupled. A class

is coupled to its parent class if one of its inherited

methods is functionally dependent on the new or rede-

fined methods in the parent class. When a data member,

which is used by an inherited method, is modified by a

new or redefined method, it is likely to introduce new

faults into the inherited method.

Coupling Between Methods (CBM) provides the total
number of new/redefined methods in which all the

inherited methods are coupled. CBM measures the total

number of function dependency relationships between

the inherited methods and new/redefined methods. We

have chose CBM to predict the number of faults because

it can measure the functional dependency complexity at

the methods level.

Weighted Methods per Class (WMC) is defined as a
function of the number of all member functions and

operators in each class. We have selected WMC to

measure the complexity of an individual class.

Number of Object/Memory Allocations (NOMA)

measures the total number of statements that allocates

new objects or memories in a class. A class with more

object/memory allocating activities tends to introduce

more object management faults related to object copy-
ing, dangling reference, object memory usage faults and

so on. Therefore NOMA can be used as a predictor

variable for software quality.

First, we performed a preliminary analysis using

multiple regressions. As shown in Appendix A, we got

an R square value of 0.856. R square is a regression

quality indicator that measures how much variance in

the dependent variable is accounted for by the inde-
pendent variables in the sample. About 85% of the

variation in the criterion variable, the number of faults

in the class, can be explained by the regression model

with all predictors WMC, DIT, NOC, CBO, RFC, IC,

CBM and NOMA. The adjusted R square corrected for

the number of predictors equals 0.843. So therefore,

84% of the total variance in the number of faults is ac-

counted for by the metrics in the population. The ob-
served significance level is less than 0.001. We can

conclude that the prediction of the number of faults

from the above metrics is possible.

4.3. Experiments

Relationships between static software metrics and

quality factors are often complex and nonlinear, limiting
the accuracy of conventional approaches. Artificial

neural networks are adept at modeling nonlinear func-



tional relationships that are difficult to model with other

techniques, and thus, are attractive for software quality

modeling.

First, each data pattern was examined for erroneous

entries, outliers, blank entries and redundancy. We

standardized the metrics to a mean of zero and a vari-
ance of one for each metric. Many raw software metrics

have incompatible units of measures. This step converts

all of them to the unit of one standard variation. After

standardizing the metric data, we performed the prin-

cipal component analysis. Table 1 presents the rela-

tionship between the original object-oriented metrics

and the domain metrics for HMI system.

For HMI system, PCA identified three sets of prin-
cipal components (PCs), which capture 40.7%, 19.24%

and 18.28% respectively of the data set variance, which

gives a representation of about 78.22% of the popula-

tion. Table 1 shows the coefficient measure for each

rotated component, with coefficients larger than 0.6 set

in boldface. The Eigen value, the percentage of the data

set described, and the cumulative variance percentages

are also shown. Based on the analysis of the coefficients
associated with each metric within each of the three sets

of rotated components, the PCs are interpreted as fol-

lows.

The first principal component shows high correlation

between metrics with RFC, WMC, CBM, IC and

NOMA. The second principal component is highly

correlated with NOC and CBO. The third principal

component shows highest correlation with DIT.
We divided our data into training, testing, and pro-

duction sets using 3:1:1 ratio, which is the commonly

accepted proportion used by most neural network

researchers. We randomly extracted 19 patterns for the

test set and another 19 patterns for the production set.

The remaining 59 patterns are used as training set. We

used the production data set to evaluate model perfor-

mance.
The dependent variable was the number of faults per

class and the independent variables were the three

principal components identified above (out of eight

software metrics). We used both the Ward network and

GRNN network for predicting the number of defects.

The Ward neural design summary is presented in Table

2.

The GRNN usually requires one hidden node for

each training sample. Therefore we used 97 neurons in

the hidden layer, 3 neurons in the input layer and one

neuron in the output layer as shown in Table 3. In this

study, the value of the smoothing factor is 0.05507813.

4.4. Experiment results

To measure the goodness of fit of the model, we use

the coefficient of multiple determination (R square), the

coefficient of correlation (r), mean square error, mean

absolute error, minimum absolute error and maximum

absolute error. These statistical measures are shown in
Table 4. The correlation of the predicted change and the

observed change is represented by the coefficient of

correlation (r). An r value of 0.9476 in Ward neural

network and 0.9531 in GRNN network represent high

correlations for cross-validation. The number of obser-

vations is 97. The significance level of a cross-validation

is indicated by the p value. A commonly accepted p
value is 0.05. In our experiment, the two tailed proba-
bility p value is less than 0.001 in the both cross-vali-

dations. This shows a high degree of confidence for the

successful validations. The results clearly indicate a close

relationship between metrics (independent variables)

and the number of faults per class in software applica-

tions (dependent variable).

Table 4

Experimental result for the HMI system

Ward GRNN

R square 0.8715 0.9077

r (correlation coefficient) 0.9476 0.9531

Mean square error 1.584 1.138

Mean absolute error 0.823 0.765

Min absolute error 0.001 0

Max absolute error 6.211 4.295

t Values 28.88816 28.88154

p Values <0.001 <0.001

Table 2

Ward neural network architecture used

Slab1 Slab2 Slab3 Slab4 Slab5

No. of neurons 3 4 4 4 1

Table 3

GRNN neural network architecture used

Input layer Hidden layer Output layer

No. of neurons 3 97 1

Table 1

Rotated principal components for the HMI system

Metrics PC1 PC2 PC3

WMC 0.9068 )0.0544 )0.1768
DIT )0.0358 )0.0400 0.9286

NOC )0.0274 0.8710 )0.0694
CBO )0.0043 0.8508 0.0471

RFC 0.9399 )0.0818 )0.0919
IC 0.6452 0.1678 0.5140

CBM 0.8636 0.0811 0.2932

NOMA 0.6216 )0.1029 0.4508

Eigenvalues 3.256 1.539 1.462

% Variance 40.703 19.238 18.279

Cummulative % variance 40.703 59.940 78.219



4.5. Results from a 10-cross-validation study

We performed a 10-cross-validation of the prediction

neural network model in Tables 2 and 3. It is a common

technique to evaluate learning algorithms on a dataset.

The 97 data points were randomly split into 10 parti-
tions or folds of roughly equal size (eight partitions of 10

data points each, one partition of nine data points and

one partition of eight data points). For each fold, the

following processing is performed. For each iteration,

the selected fold becomes the test set, and the other 9

folds are combined into the training set. Create a neural

network and train it on the training set and test it on the

test set. We performed 10 times and took a mean
accuracy to obtain the estimated performance of the

neural network. The results are summarized in Table 5

for the GRNN network and in Table 6 for the Ward

neural network.

The average value of the correlation between pre-

dicted faults and actual faults is 0.94147 in the GRNN

network and 0.93515 in the Ward network. They are

statistically significant. The average squared multiple
correlation is 0.88008 in the GRNN network and

0.85966 in the Ward network. Therefore about 88% and

86% of the variance, respectively, in the number of faults

can be accounted for by the two predictors.

5. Prediction of maintenance effort

5.1. Description of data

This investigation attempted to predict the mainte-

nance effort. The commercial software product

QUES(Quality Evaluation System) data is used in this

investigation (Wei and Henry, 1993). The maintenance

effort is measured by counting the number of lines

changed per class. A line change could be an addition or
a deletion. A change of the content of a line is counted

as a deletion followed by an addition. The QUES system

was designed and developed with Class-Ada.

5.2. Selection of metrics

We have selected the software metrics that have a

strong relationship with software maintainability. To
predict the maintenance effort, DIT, RFC and WMC

that are previously defined in Section 4.2 and the fol-

lowing metrics are used.

Message Passing Coupling (MPC) gives an indication

of how many messages are passed among objects of the

classes. The number of messages sent out from a class

indicates how dependent the implementation of the local

methods is on the methods in other classes.
Lack of Cohesion in Methods (LCOM) is the num-

ber of pairs of methods in the class using no attributes

in common, minus the number of pairs of methods that

do. If this difference is negative, LCOM is set to zero.

The cohesion of a class is characterized by how closely

the local methods are related to the local instance

variables in the class. It is harder to maintain a class

that has a larger LCOM metric value because, if all the
methods defined in a class access many independent

sets of data structures encapsulated in the class, the

class may not be well designed and partitioned. LCOM

can be used to predict the maintainability of the

class.

Data Abstraction Coupling (DAC) is the number of

attributes in a class that have as their type another class.

This metric measures the coupling complexity caused by
abstract data type (ADT). The number of variables

having ADT type may indicate the number of data

structures dependent on the definitions of other classes.

It is more difficult to maintain the class that has more

ADT’s.

The number of local methods (NOM) defined in a

class indicates the operation property of a class. The

more methods a class has, the more complex will be the
class’s interface.

Table 5

Results from 10-cross-validation for the GRNN network

Partition R squared Correlation coefficient r

1 0.9151 0.9576

2 0.8863 0.9428

3 0.8563 0.9286

4 0.8963 0.9481

5 0.8485 0.9238

6 0.9486 0.9743

7 0.9355 0.9677

8 0.6425 0.8362

9 0.9137 0.9567

10 0.9580 0.9789

Average 0.88008 0.94147

Table 6

Results from 10-cross-validation for the Ward Network

Partition R squared Correlation coefficient r

1 0.8834 0.9401

2 0.8749 0.9377

3 0.7417 0.9043

4 0.8593 0.9327

5 0.8593 0.9327

6 0.8724 0.936

7 0.8765 0.9442

8 0.8765 0.9442

9 0.8825 0.9427

10 0.8701 0.9369

Average 0.85966 0.93515



Size metrics have been used as software metrics for a

long time. Two size metrics are used in this prediction.

The first size metric (SIZE1) is the traditional line of

code metric, which is calculated by counting the number

of semicolons in a class. The second size metric (SIZE2)

is the total number of attributes and methods of a class.
We performed the preliminary analysis using multiple

regression. As shown in Appendix B, we got an R square

value of 0.734. About 73% of the variation in the cri-

terion variable maintenance effort can be explained by

the regression model with all predictors DIT, MPC,

RFC, LCOM, DAC, WMC, NOM, SIZE1 and SIZE2.

The adjusted R square is 0.694. So therefore, 69% of the

total variance in the number of faults is accounted for by
the metrics in the population. The observed significance

level is less than 0.001. We can conclude that the pre-

diction of maintenance effort from the above metrics is

possible.

5.3. Experiments

As in this experiment, first, each data pattern was
examined for erroneous entries, outliers, blank entries

and redundancy. After standardizing the metric data, we

performed the principal component analysis. Table 7

presents the relationship between the original object-

oriented metrics and the domain metrics for QUES

system.

For the QUES system, PCA identified three PCs,

which capture 89% of the data set variance; Table 7
shows for each rotated component the coefficients of the

measure, with coefficients larger than 0.6 set in boldface.

The Eigen value, the percentage of the data set variance

each PC describes, and the cumulative variance per-

centage are also provided. Based on the analysis of the

coefficients associated with each metric within each of

the three rotated components, the PCs are interpreted as

follows.
The first component is highly correlated with NOM,

SIZE2, RFC, LCOM, WMC, SIZE1 and DAC. NOM is

the best representative, however, because it is less cor-

related with the other two components. The second

component is most highly correlated with MPC. The

third component is most highly correlated with DIT.

This suggests that NOM, MPC and DIT metrics should

be focused on in further analysis for this system.

We divided the data into training, testing, and pro-

duction sets using a 3:1:1 ratio. Test set is used to pre-
vent over training the network so they will generalize

well. We used the production data set to evaluate model

performance. The network’s results can be tested with

the data the network has never seen before.

We used the Ward network and the GRNN network

for predicting the number of changes. Table 8 shows the

summary of the Ward network design. In our General

Regression neural network design, there were 71 neu-
rons in the hidden layer, 3 neurons in the input layer and

one neuron in the output layer as shown in Table 9. In

this study, the value of the smoothing factor is

0.02460938.

5.4. Experiment results

The summary results in terms of the goodness of fit of
the model are shown in Table 10. The correlation of the

predicted change and the observed change is repre-

sented by the coefficient of correlation (r). The coeffi-

cient of correlation values of 0.747 in the Ward neural

network and 0.8590 in the GRNN network represent

high correlations for cross-validation. The number of

Table 10

Experimental result for the QUES system

Ward GRNN

R square 0.5545 0.7220

r (correlation coefficient) 0.747 0.8590

Mean square error 817.004 509.790

Mean absolute error 20.782 12.182

Min absolute error 0.094 0

Max absolute error 114.161 109.385

t Values 9.329047 13.98484

p Values <0.001 <0.001

Table 8

Ward neural network architecture used for the QUES system

Slab1 Slab2 Slab3 Slab4 Slab5

No. of neurons 3 3 3 3 1

Table 9

GRNN neural network architecture used

Input layer Hidden layer Output layer

No. of neurons 3 71 1

Table 7

Rotated principal components for the QUES system

Metrics PC1 PC2 PC3

DIT 0.060 0.027 0.966

MPC )0.023 0.966 0.037

RFC 0.877 0.333 0.043

LCOM 0.869 )0.156 0.059

DAC 0.796 0.027 0.427

WMC 0.832 0.258 )0.27
NOM 0.971 )0.132 0.097

SIZE1 0.812 0.475 )0.089
SIZE2 0.963 )0.093 0.190

Eigenvalues 5.384 1.388 1.248

% Variance 59.826 15.424 13.863

Cummulative % variance 59.826 75.250 89.113



observations is 71. Two tailed probability p values less

than 0.001 in both cross-validations shows a high degree

of confidence for the successful validations. We con-

clude that the impact of model prediction is valid in the

population.

5.5. Results from a 10-cross-validation study

Results from the 10-cross-validation of the prediction

neural network model are shown in Tables 11 and 12.

The 71 data points were randomly split into 10 parti-

tions or folds of roughly equal size (nine partitions of

seven data points each and one partition of eight data

points).

The average value of the correlation between main-

tenance effort and actual maintenance effort is 0.8580623
in GRNN network and 0.7609805 in the Ward network.

They are statistically significant. The average squared

multiple correlation is 0.71139 in the GRNN network

and 0.56067 in the Ward network. Therefore about 71%

and 56%, respectively, of the variance in the mainte-

nance effort can be accounted for by the two predictors.

6. Conclusion

The neural network modeling techniques used in this

study are applicable to improving the quality of soft-

ware products. This paper presents regression models

and neural network models of the Human Machine
Interface system and Quality Evaluation System, pre-

dicting the number of software defects and the main-

tenance effort. The independent variables were

principal components of software design metrics. Ta-

bles 4 and 10 summarize the prediction results of the

neural network models. The two tailed probability p
values are less than 0.001 in both cross-validations.

That shows a high degree of confidence for the suc-
cessful validations.

In the prediction of the number of faults experiment,

the correlation between predicted faults and actual

faults is 0.9531 in the GRNN network and 0.9476 in the

Ward network. In the maintainability prediction

experiment, the correlation between predicted mainte-

nance effort and actual maintenance is 0.8590 in the

GRNN network and 0.747 in the Ward network. They
are statistically significant. The GRNN network model

is found to predict more accurately than the Ward net-

work model.

From the results presented above, the object-oriented

metrics chosen in this study appear to be useful in pre-

dicting software quality. These software metrics are

significantly related to the number of faults and the

maintenance effort. These prediction models can be used
to forecast the group membership of modules from a

subsequent release or a similar system developed in the

same environment.

Our future research direction aims to estimate soft-

ware readiness using neural network models. To esti-

mate readiness, three factors will be considered in our

future study: (1) how many faults are remaining in the

programs (2) how many changes are required to correct
the errors and (3) how much time is required to change

the programs. Software metrics concerning with poly-

morphism, inheritance, complexity, cohesion, coupling,

dynamic memory allocation, database operations and

size will be used.

Acknowledgement

The authors would like to thank Associate Professor

Dr. Mei-Hwa Chen, Computer Science Department,

University at Albany, State University of New York, for

allowing us to test our model with data they had col-

lected from industrial real-time systems.

Table 11

Results from 10-cross-validation for the GRNN network

Partition R squared Correlation coefficient r

1 0.7553 0.8824398

2 0.7984 0.9102747

3 0.7539 0.9206519

4 0.604 0.781025

5 0.6032 0.78

6 0.7759 0.9027181

7 0.7215 0.8598256

8 0.7345 0.8906178

9 0.5709 0.7584194

10 0.7963 0.8946508

Average 0.71139 0.8580623

Table 12

Results from 10-cross-validation for the Ward network

Partition R squared Correlation coefficient r

1 0.5723 0.7696753

2 0.5046 0.7690904

3 0.551 0.7721399

4 0.6472 0.8093207

5 0.544 0.7495999

6 0.5787 0.7694803

7 0.6277 0.7988742

8 0.5517 0.7179136

9 0.5048 0.717844

10 0.5247 0.7358668

Average 0.56067 0.7609805



Appendix A. Regression analysis for HMI system

Model summary

Appendix B. Regression analysis for QUES system

Model summary

Model R R Square Adjusted
R square

Std. error of
the estimate

Change statistics

R Square

change

F Change df1 df2 Sig. F change

1 0.925a 0.856 0.843 1.39971 0.856 65.283 8 88 0.000
a Predictors: (Constant), NOMA, CBO, DIT, IC, NOC, WMC, CBM, RFC.

Model R R Square Adjusted
R square

Std. error
of the

estimate

Change statistics

R Square

change

F Change df1 df2 Sig. F
change

1 0.856a 0.734 0.694 23.84591 0.734 18.663 9 61 0.000
a Predictors: (Constant), SIZE1, DIT, MPC, LCOM, DAC, WMC, RFC, NOM, SIZE2.

Appendix C

Prediction of Number of Faults for HMI System

-2

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Production Set Pattern No.

N
o.

 o
f F

au
lts

Actual(1) Ward GRNN

Appendix D

Prediction of the No. of Line Changes per Class for QUES 
System

0

50

100

150

200

1 2 3 4           5           6 7 8            9 10 11 12 13 14

Production Set Pattern No.

Actual Ward GRNN

Th
e 

N
o.

 o
f L

in
e 

C
ha

ng
es

   
   

   
   

 P
er

 C
la

ss



References

Briand, L. et al., 2000. Exploring the relationships between design

measures and software quality in object-oriented systems. Journal

of Systems and Software 51, 245–273.

Briand, L. et al., 2002. Assessing the applicability of fault-proneness

models across object-oriented software projects. IEEE Trans-

actions on Software Engineering 28, 706–720.

Cartwright, M., Shepperd, M., 2000. An empirical investigation of

object oriented software system. IEEE Transactions on Software

Engineering 26, 786–796.

Chidamber, S., Kemerer, C., 1994. A metrics suite for object oriented

design. IEEE Transactions on Software Engineering 20, 476–493.

Emam, E. et al., 2001. The prediction of faulty classes using object-

oriented design metrics. Journal of Systems and Software, 63–75.

Fioravanti, F., Nesi, P., 2001. A study on fault-proneness detection of

object-oriented systems. In: Fifth European Conference on Soft-

ware Maintenance and Reengineering, pp. 121–130.

Khoshgoftaar, T., et al., 2000. Predicting testability of program

modules using a neural network. In: Proceedings of the 3rd IEEE

Symposium on Application-Specific Systems and Software Engi-

neering Technology, pp. 57–62.

NeuroShell 2 Help, Ward Systms Group, Inc. http://www.wardsys-

tems.com.

Ping, Y., et al., 2002. Predicting fault-proneness using OO metrics. An

industrial case study. In: Proceedings of 6th European Confer-

ence on Software Maintenance and Reengineering, pp. 99–

107.

ReiBing, R., 2001. Towards a model for object-oriented design

measurement. In: Proceedings of the 5th International ECOOP

Workshop on Quantitative Approaches in Object-Oriented Soft-

ware Engineering, pp. 71–84.

Specht, D., 1991. A general regression neural network. IEEE Trans-

actions on Neural Networks 2 (6), 568–576.

Tang, M. et al., 1999. An empirical study on object-oriented metrics.

In: Proceedings of the Sixth IEEE International Symposium on

Software Metrics, pp. 242–249.

Wei, L., Henry, S., 1993. Object-oriented metrics that predict

maintainability. Journal of Systems and Software, 111–

122.

http://www.wardsystems.com
http://www.wardsystems.com

	Application of neural networks for software quality prediction using object-oriented metrics
	Introduction
	Related work
	Design of the study
	Neural network modeling
	Principal component analysis

	Prediction of number of faults
	Description of data
	Selection of metrics
	Experiments
	Experiment results
	Results from a 10-cross-validation study

	Prediction of maintenance effort
	Description of data
	Selection of metrics
	Experiments
	Experiment results
	Results from a 10-cross-validation study

	Conclusion
	Acknowledgements
	Regression analysis for HMI system
	Regression analysis for QUES system
	Appendix C
	Appendix D
	References


